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Chiral symmetry breaking (CSB) is promising to realize a series of exotic topological phenomena due to the
coupling of Dirac fermions at inequivalent valleys. We propose a strategy to introduce CSB by applying a Kekulé
distortion in a spinless honeycomb lattice, resulting in the emergence of a second-order topological phase as the
period of the superlattice is 3m × 3m (m = 1, 2, …). Following the strategy, SixCy and circumcoronene-based
two-dimensional (2D) honeycomb lattices are predicted to be second-order topological insulators (SOTIs) that
are identified via the topological invariants and the presence of in-gap topological corner modes. In this paper,
we provide an effective approach to realize CSB in a honeycomb lattice and greatly enrich 2D SOTIs families.
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I. INTRODUCTION

High-order topological insulators (TIs) have special bulk-
boundary correspondence [1–6], where, the nth (n = 2, 3,
…)-order TI in d dimensions has protected gapless states on
its (d − n)-dimensional boundaries. For example, a second-
order TI (SOTI) in two dimensions (2D) [three dimensions
(3D)] hosts topological states at its zero-dimensional (0D)
corners [one-dimensional (1D) hinges] within their gapped
edge (surface) states. SOTIs have stimulated great interest
due to hosting symmetry-protected gapless states, which are
promising for spintronic devices [7,8]. Up to now, 2D SO-
TIs can be produced by four different theoretical models.
(I) The time-reversal-symmetry-breaking model destroys the
first-order topological phase while protecting the second-
order topological phase by introducing magnetism [9,10]. (II)
The band-inversion model inverts bands with opposite parities
twice [11]. (III) The breathing lattice model results in the
mismatch between the atom sites and the Wannier centers in
square and kagome lattices [3,12]. (IV) The Kekulé distorted
model breaks chiral symmetry in honeycomb lattices [13,14].

Kekulé-distortion-induced chiral symmetry breaking
(CSB) is the result of coupling of Dirac fermions with
opposite chiralities at valleys K and K′ and the corresponding
gap opening [15–22]. Though two Kekulé distortions
(Kekulé-Y or Kekulé-O) with a superlattice period of (�3 ×
�3)R30° in a honeycomb lattice have been reported [19,22–
24], only Kekulé-O distortion can induce gap opening, thus
realizing CSB and showing high-order topological states
[13,14,25–32]. We notice that the coupling of Dirac fermions
with opposite chiralities can also be realized in distorted
(3m × 3m) (m = 1, 2, …) superlattices due to the two valleys
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being folded into � [21]. Thus, it opens opportunities for
investigating CSB-induced 2D SOTIs based on distorted
3m × 3m superlattices.

In this paper, we introduce a triangular Kekulé distortion
(namely, Kekulé-T) in honeycomb lattices with superlattice
period of (3m × 3m), where m = 1, 2, …. Based on the tight-
binding (TB) models, we predict the existence of second-order
topological phases in (3m × 3m) superlattices by applying
Kekulé-T distortion. We find that the two valleys K and K′ are
folded into �, lead to gap opening and resulting in SOTIs. By
using first-principles calculations, we predict two categories
of group-IV materials to be SOTIs, i.e., 2D SixCy and the
circumcoronene-based covalent organic framework (COF).
The SOTI characteristics of these materials are identified
via their topological invariants and the presence of in-gap
topological corner modes. We also predict that a first-order
topological phase exists in 2D SixCy with superlattice periods
of [(3m + l ) × (3m + l )], when l = 1 or 2. In this paper, we
provide a systematic strategy to design 2D SOTIs and first-
order TIs (FOTIs) in honeycomb lattices.

II. RESULTS

Previous reported Kekulé-O and Kekulé-Y distortions
are both based on a (�3 × �3)R30° superlattice [22,24],
where Kekulé-O distortion could introduce a band gap, while
Kekulé-Y distortion has been revealed to keep gapless band
structure [33]. The Kekulé distortion originated from a distinct
bond order within hexagonal rings. Thus, the TB model of
Kekulé distortion is reflected by the different nearest-neighbor
(NN) hopping parameters. Here, we introduce a typical
Kekulé-T distortion in honeycomb lattices and construct NN
TB models on three honeycomb lattices with periods of
(N × N) (N = 3, 4, and 5), as shown in Figs. 1(a)–1(c). There
are three types of hopping in each unit cell, i.e., t1, t2, and
t3, marked by gray, red, and dashed red lines, respectively.
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FIG. 1. Classification of two-dimensional (2D) Kekulé-T lattice with D6h symmetry. (a)–(c) Sketch of the 2D Kekulé-T lattice with different
bond strengths (represented by gray, red, and red dashed lines) in different sizes (unit cell periods equal to 3, 4, and 5). The unit cells are marked
by blue rhombus. The a is the lattice constant of a honeycomb lattice in the absence of distortion, as shown in black rhombus in (a). (d)–(f)
Band structures by using tight-binding models with N = 3, 4, and 5, respectively. The parameters are set as t1 = −2.70 eV, t2 = −3.00 eV,
and t3 = −3.25 eV. (g)–(i) Schematic of band folding.

The lattice constants are 3a, 4a, and 5a in three honeycomb
lattices, respectively, where a is the lattice constant of a hon-
eycomb lattice in the absence of distortion.

The TB model is built based on a single orbital as follows:

Ĥ = t1
∑

i j

(ĉ†
i ĉ j + H.c.) + t2

∑

i′ j′
(ĉ†

i′ ĉ j′ + H.c.)

+ t3
∑

i′′ j′′
(ĉ†

i′′ ĉ j′′ + H.c.).

In the model, only NN hopping between the orbitals is
considered. The TB parameters are set to be t1 = −2.70 eV,
t2 = −3.00 eV, and t3 = −3.25 eV.

The energy dispersions of three Kekulé-T distorted honey-
comb lattices are shown in Figs. 1(d)–1(f). The system with
a period of (3 × 3) opens a gap at the � point, while the
systems with periods of (4 × 4) and (5 × 5) remain gapless.
The energy dispersion of systems with periods of (6 × 6),
(7 × 7), and (8 × 8) shows the same characteristics as shown
in Fig. S2 in the Supplemental Material (SM) [34]. According
to the energy band folding, these superlattices can be catego-
rized into two groups on the basis of the Dirac cone position,

as schematically illustrated in Figs. 1(g)–1(i). In the cases
of the superlattice with a period of (3 × 3), the intervalley
coupling of a Dirac fermion with opposite chiralities at K and
K′ leads to CSB, which replicate Dirac cones at the Brillouin
zone center (� point) and gap opening. In the cases of su-
perlattices with periods of (4 × 4) and (5 × 5), the K and K′
points in primitive cells correspond to that in the superlattices.
Therefore, K and K′ remain twofold degenerate Dirac points.
These two systems belong to FOTIs due to an odd total parity
of all time-reversal invariant momenta (TRIM), leading the
calculated Z2 invariants to both equal 1.

The CSB in the system is promising to realize high-order
topological states [14,28]. Since Kekulé-T distorted honey-
comb lattices have both P and T symmetries, the higher-order
band topology of the system with a period of (3 × 3) can
be characterized by second Stiefel-Whitney number ω2. The
value of ω2 can be calculated from the parity eigenvalues of
the occupied bands at TRIM, ki ∈ (�, M1, M2, M3), using the
expression:

(−1)ω2 =
∏

ki∈TRIM

(−1)�N−
occ(ki )/2�,
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FIG. 2. Atomic structures and band structures of two-dimensional (2D) SixCy. Atomic structures of (a) second-order (ω2 = 1) and (b) and
(c) first-order topological insulators (Z2 = 1). The black and yellow spheres represent C and Si atoms, respectively. The blue dotted rhombus
represent primitive unit cells of the 2D SixCy. The electronic band structures of (d) Si6C12, (e) Si12C20, and (f) Si20C30.

where N−
occ(ki ) is the number of occupied bands with an odd

parity at ki, and �N−
occ(ki )/2� is the floor function, returning

the greatest integer less than or equal to N−
occ(ki )/2. The cal-

culated parities at TRIM are listed in Table S1 in the SM
[34]. We find that the occupied states at the � (M) point
have 3 (5) odd bands out of 9, leading to a nonzero ω2 = 1,
which indicates the system with period of (3 × 3) to be a 2D
SOTI.

To find out the key roles of the emergence of the SOTI,
we analyze the energy dispersion for different ratios of t2
and t3 hopping parameters. The system becomes a trivial
insulator when |t2/t3| > 1, as shown in Fig. S1(a) in the SM
[34]. As |t2/t3| decreases, a topological phase transition occurs
at |t2/t3| = 1. At that critical point, the system becomes a
semimetal, as shown in Fig. S1(b) in the SM [34]. A band
inversion occurs at the � point for smaller |t2/t3|, leading to a
SOTI phase. Moreover, the signs of t2 and t3 have no effect on
the energy dispersion and band topology of the systems with
periods of (3 × 3), which is different from the previous studies
[28,29].

III. DISCUSSION

Recent successful synthesis of monolayer honeycomb SiC
and Si9C15 indicates the tunable ratio of Si and C atoms
[35,36]. The coexistence of Si-C and C-C bonds is promis-
ing for the realization of Kekulé distortion in SixCy systems.
Using the approach, we propose a family of 2D SixCy to be
SOTIs and FOTIs. The structure of optimized freestanding
2D SixCy is completely flat with a single-atom thickness,
as shown in Figs. 2(a)–2(c). The space group of SixCy is
P6/mmm. Consisting of sp2-hybridized carbon and silicon
atoms, 2D SixCy exhibits a high π conjugation, which helps
to stabilize the planar structures. The stoichiometric formula
of 2D SixCy systems with a period of (N × N), where N =
3m + l (m = 1, 2, …; l = 0, 1, 2) can be summarized as
x = (3m + l )(3m + l − 1), y = (3m + l )(3m + l + 1). Thus,
the 2D systems with periods of (3 × 3), (4 × 4), and

(5 × 5) have stoichiometric formulas of Si6C12, Si12C20, and
Si20C30 in each unit cell [blue rhombus in Figs. 2(a)–2(c)],
respectively. The averaged lengths of C-C and C-Si bonds in
each unit cell are ∼1.44 and 1.81 Å, respectively. The fully
relaxed lattice constants of 2D Si6C12, Si12C20, and Si20C30

are 8.76, 11.87, and 14.97 Å, respectively. The absence of
imaginary frequencies in the phonon dispersion calculations
of 2D Si6C12, Si12C20, and Si20C30 (see the SM [34], see also
Refs. [37–39] therein) indicate they are thermodynamically
stable structures.

A global direct band gap of 0.21 eV is formed between the
conduction band minimum (CBM) and valence band maxi-
mum (VBM) at the � point in the 2D Si6C12 structure, as
shown in Fig. 2(d). Notably, both the CBM and VBM of the2D
Si6C12 structure are doublet degenerate. From the projected
density of states (PDOS) shown in Fig. S5(b) in the SM [34],
the bands near the Fermi level mainly come from the pz or-
bitals of the carbon and silicon atoms in 2D Si6C12. The VBM
is mainly contributed by the central SiC six-rings, while the
CBM is contributed by the C six-rings and nearby Si atoms.
However, the 2D Si12C20 and Si20C30 structures both display
twofold degenerate Dirac points at the K point without consid-
ering spin-orbit coupling (SOC), as shown in Figs. 2(d)–2(f).
The calculated Z2 invariants (Z2 = 1) indicate Si12C20 and
Si20C30 are FOTIs.

It is interesting to note that the 2D irreducible represen-
tations of the CBM and VBM in Si6C12 are E2u and E1g,
respectively. The two irreducible representations have oppo-
site parities under inversion symmetry, which is consistent
with the band-inversion-induced nontrivial topological states
based on the TB model. Moreover, the calculated nonzero
bulk topological index (ω2 = 1) further confirms 2D Si6C12

to be a SOTI. In addition to the bulk topological index, the 2D
SOTI is also characterized by a gapped edge state. Here, only
the armchair edge is considered, as illustrated in Fig. 3(a),
since the zigzag edge will induce edge magnetism in 2D
Si6C12, which is beyond our consideration. The edge state
is calculated by using the WANNIER90 package, in which a
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FIG. 3. Topological properties of second-order topological in-
sulator Si6C12. (a) Semi-infinite structures of armchair-terminated
edge. (b) The projected edge density of states. (c) Energy spectrum
of the hexagonal-shaped Si6C12 cluster. (d) The total real-space wave
function distributions of six in-gap topological corner states. The
isosurface is set to be 0.001 e/Bohr [3].

TB Hamiltonian in the basis of the maximally localized Wan-
nier functions (MLWFs) is fitted to the first-principles band
structure. The Wannier band structure of Si6C12 matches well
with the density functional theory (DFT) result (see the SM
[34], see also Refs. [40–43] therein). In Fig. 3(b), we plot the
edge spectrum for the armchair edge. The calculated results
show there is a ∼0.1 eV band gap between the topological
edge states, making it possible to detect the in-gap topological
corner states experimentally. In addition, the DFT calculated
band structure of the Si6C12 nanoribbon also shows a band
gap of 0.12 eV (see the SM [34]). The dangling bonds on the
edges are saturated with hydrogen atoms. The spatial electron
distribution of the VBM and CBM is mainly localized at the
armchair edges. Both Wannier and DFT calculations confirm
the existence of a gapped edge state.

To further confirm the topological properties of 2D Si6C12,
we calculated the energy spectrum of a finite-sized hexagonal-
shaped flake with 780 atoms. To prevent the effect of
dangling-bond-related edge states in the gap, we passivated all
dangling bonds with hydrogen atoms. The calculated energy
spectrum for the flake is plotted in Fig. 3(c). There are six
electronic states near the Fermi level, marked by red circles.
By plotting the spatial distribution of electron density for these
states [Fig. 3(d)], we find that the states are mainly localized
on the six corners, which indicates the corner states. Com-
bined with the nontrivial topological invariants and gapped
topological edge states, we can firmly identify 2D Si6C12 as a
SOTI.

The DFT-calculated band structures and nontrivial topo-
logical properties of SixCy systems, where m = 1, are
consistent with those predicted by our TB models. The rules
based on our TB models can also be applied to SixCy systems
of m = 2, 3, …. In Figs. S8 and S9 in the SM [34], we
provide the DFT calculations of 2D SixCy of m = 2. Here, 2D
Si30C42 opened a gap of 0.06 eV at the � point. The calculated

-2

-1

0

1

2

)Ve(
ygrenE

Γ ΓM K

(a) (b)

(c) (d)

-0.6

0.0

0.6

)Ve(
ygrenE

Energy Level

Eg=1.31 eV

FIG. 4. Topological properties of second-order topological insu-
lator in circumcoronene-based covalent organic framework (COF).
(a) Atomic structures and (b) band structure of COF. (c) Energy
spectrum of the hexagonal-shaped COF. (d) The total real-space
wave function distributions of six in-gap topological corner states.
The isosurface is set to be 0.001 e/Bohr [3].

nonzero bulk topological index (ω2 = 1) and corner states
(see the SM [34]) in a finite-sized hexagonal-shaped flake
indicate that it is a SOTI. Also, 2D Si42C56 and Si56C72 both
have Dirac points, and the calculated Z2 invariants equal 1,
confirming the systems remain FOTIs. The two-dimensional
Si2C6 compound reported by Ding and Wang [44] is a FOTI,
which also follows our rule.

We also applied this mechanism to the COF. The chemi-
cal structure of the circumcoronene-based COF is shown in
Fig. 4(a). The holes in the COF can be viewed as Kekulé-T
distortion and honeycomb patterns linked by lines in orange
and gray in Fig. 4(a). The DFT-calculated band structure of the
circumcoronene-based COF has a global band gap of 1.31 eV
at the � point, as shown in Fig. 4(b). The calculated nonzero
bulk topological index (ω2 = 1) indicates it to be a 2D SOTI.
To further identify corner topology, we calculated the energy
spectrum of a finite-sized hexagonal-shaped flake with hydro-
gen atoms passivating all dangling bonds. The calculated dis-
crete spectrum for the flake is plotted in Fig. 4(c). There are six
electronic states near the Fermi level. The electron density dis-
tributions of these six electronic states in real space are plotted
in Fig. 4(d). Clearly, these states are well localized at the
six corners, so they correspond to topological corner states.
Combined with the nontrivial topological invariants, we can
thus firmly confirm the circumcoronene-based COF is a SOTI.

IV. CONCLUSIONS

In summary, we proposed a general mechanism to realize
intrinsic SOTIs in 2D real materials and predicted the exis-
tence of second-order topological states in 2D SixCy and the
circumcoronene-based COF by using first-principles calcula-
tions. These discoveries will draw more fundamental research
interest to explore higher-order TIs in 2D electronic materials
in the future.
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